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An optimization-based approach to scheduling residential battery storage with
solar PV: Assessing customer benefit

Elizabeth L Ratnama,1,∗, Steven R. Wellera,1, Christopher M. Kelletta,1

aThe University of Newcastle, School of Electrical Engineering and Computer Science, University Drive, Callaghan NSW 2308, Australia

Abstract

Several studies have suggested that battery storage co-located with solar photovoltaics (PV) benefits electricity distrib-
utors in maintaining system voltages within acceptable limits. However, without careful coordination, these potential
benefits might not be realized. In this paper we propose an optimization-based algorithm for the scheduling of resi-
dential battery storage co-located with solar PV, in the context of PV incentives such as feed-in tariffs. Our objective
is to maximize the daily operational savings that accrue to customers, while penalizing large voltage swings stemming
from reverse power flow and peak load. To achieve this objective we present a quadratic program (QP)-based algo-
rithm. To complete our assessment of the customer benefit, the QP-based scheduling algorithm is applied to measured
load and generation data from 145 residential customers located in an Australian distribution network. The results
of this case study confirm the QP-based scheduling algorithm significantly penalizes reverse power flow and peak
loads corresponding to peak time-of-use billing. In the context of feed-in tariffs, the majority of customers exhibited
operational savings when QP energy-shifting.

Keywords: Photovoltaics, battery scheduling, feed-in tariffs, time-of-use pricing, peak-load reduction.

1. Introduction

Climate change, energy security, and limited fossil fuel resources are drivers for the integration of renewable energy
sources such as solar into the modern power grid. Significant challenges in converting the abundant solar resource
into reliable, high-quality electricity include variability of solar irradiance on both daily and seasonal timescales in
addition to intermittency arising from moving cloud cover on timescales of much shorter duration [1, 2].

Despite these challenges, governments around the world have in recent years encouraged grid-integrated residential-
scale (rooftop) solar photovoltaic (PV) generation through financial incentives such as feed-in-tariffs (FiTs) paid
directly to customers [3–5]. These financial incentives in conjunction with a sharp drop in the capital cost of small-
scale PV, and increasing electricity prices, have led to the dramatic uptake of residential PV in some countries [6, 7].
For example, in Germany PV plant installations exceed 1.2 million, and as of September 2012, peak PV capacity
reached 31 GW with about 70% of this 31 GW being connected to the low voltage grid [6].

An adverse consequence of such significant PV penetration in the low voltage electricity distribution network is
voltage rise leading to reverse power flow. Voltage rise is particularly pronounced when large numbers of rooftop PV
generators are connected in close proximity to each other [8–14]. A further adverse consequence of significant PV
penetration is voltage dip. This occurs, for example, when passing cloud cover results in a significant drop in rooftop
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PV generation [10–12, 15]. If these voltage deviations fall outside power quality standards, either the utility covers
the direct cost of mitigation or the burden of voltage regulation falls to the PV producer [2, 6, 8, 13, 14].

There are two common approaches to managing voltage rise in the low voltage grid. The first is to augment the
distribution grid by increasing conductor size and/or upgrading transformers to lower network impedances [6, 9, 16].
The second is to constrain PV generation at times of low electricity consumption in order to preserve compliance
of allowable voltage deviations [13, 17, 18]. Neither approach is optimal for increased PV penetration as network
augmentation adds to the overall PV grid integration costs [9] whereas spilling PV generation leads to lost revenue
for the producer.

Alternative approaches to managing PV generation in the low voltage grid are facilitated through Advanced Meter-
ing Infrastructure (AMI) [19–23]. When two way communication is enabled between the utility and customer via
AMI, opportunities exist for more advanced demand-side management initiatives that include direct [20, 24–28], and
price-responsive [21–23, 29, 30] load control. For example, the utility can enact price-responsive load control by
broadcasting a day-ahead time-varying electricity tariff to the AMI. To maintain an existing energy usage level, the
customer may choose to schedule battery storage in response to the time-varying electricity tariff or pay a higher
energy bill. However without careful coordination of the residential battery schedules, network load curve smoothing
via demand-side management initiatives may not be realized [26, 31, 32].

Several authors have investigated energy-time shifting through battery storage with a focus on minimizing residential
energy bills and reducing network peak demand [33–37], leading to battery schedules that either assist or exacerbate
non-compliant voltage deviations associated with solar PV. The reduction of network peak demand is incorporated
into an optimization problem in [34], where the objective function includes financial incentives for residents to deliver
energy to the grid when the purchase cost of electricity is high. Hence, when interconnected customers in close prox-
imity implement the objective function in [34], large voltage swings associated with reverse power flow potentially
arise due to the battery scheduling. The reduction of network peak demand is also incorporated into a linear program
in [33], where the energy flowing from the point of common coupling (PCC) to the customer is minimized when
residential load exceeds residential PV production. Otherwise the battery is scheduled in [33] to charge during the
off-peak pricing period, and discharge during the peak pricing period, with no penalty on increased reverse power
flow, potentially exacerbating voltage rise. In contrast, the reduction of network peak demand and the mitigation of
undesirable reverse power flow, i.e., load curve smoothing, is incorporated into the optimization problems in [35–
37]. The optimization problem in [35] achieves load curve smoothing by omitting financial incentives encouraging
solar PV uptake (e.g., feed in tariffs or net metering) in the objective function. The optimization problem in [36]
also achieves load curve smoothing by removing incentives for reverse power flow associated with battery schedul-
ing, while permitting incentives encouraging solar PV uptake. Another method for reducing network peak demand
while potentially abating reverse power flow is incorporated into the optimization problem in [37], where a sophis-
ticated dynamic pricing environment provides additional incentives for customers to smooth their day-ahead energy
consumption.

Our objective in this paper is similar to [36] in one respect, we seek to maximize residential PV generation co-located
with battery storage so that there is a financial benefit to the resident whilst simultaneously alleviating the utility burden
associated with peak demand and reverse power flow. Our approach achieves this objective for a range of financial
incentives offered for solar PV uptake, such as feed-in tariffs [3–5, 36] and net metering [34, 38, 39], in addition to
other more sophisticated dynamic day-ahead pricing rates [23, 29, 37]. We assume peak billing rates coincide with
generation shortages or peak grid demand and look to minimize energy flow from the grid to the customer during
these events, while additionally reducing reverse power flow.

Implicit in our approach is the expectation that residential customers have installed Home Energy Management (HEM)
systems that: (1) forecast the day-ahead residential load and solar PV generation, (2) coordinate with the AMI to re-
ceive day-ahead prices for energy delivered to and from the grid, including any additional PV incentives, (3) run
optimization-based algorithms daily, and (4) schedule battery storage in the day-ahead. In this paper we assume the
day-ahead forecast of load and generation from the HEM system are known and perfect, and we focus on the formula-
tion of an optimization-based algorithm that provides the day-ahead battery schedule. We also assume the customers’
HEM system is fully automated and employs a wireless communication architecture, similar to the description in
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[27]. Furthermore, we expect global investment and government mandates will drive both technology improvements
and economies of scale for battery storage as has happened with solar PV [40–43]. Therefore our focus is on the
operational savings that accrue to a resident when the HEM schedules a battery, and we exclude the capital costs of
purchasing a battery from our consideration.

In this paper we consider the quadratic program (QP)-based minimization of the energy supplied by, or to, the grid in
a residential PV system with co-located battery storage, first presented in [44]. Our objective is to smooth network
load curves while providing incentives to customers to energy time-shift. In the present paper we remove a bias in
the QP-based algorithm in [44] by including an additional battery constraint related to the state of charge, and with a
modification to the greedy-search heuristic that selects the key design parameters in this QP we reduce computational
time. Furthermore, we apply the improved QP-based scheduling algorithm to measured load and generation data from
145 Australian residential customers, and investigate the financial savings that accrue to customers. In the present
paper, the financial benefit associated with the daily battery charge/discharge schedule is our primary focus in the
context of financial incentives offered for solar PV generation such as feed-in tariffs, rather than the utility benefit of
load curve smoothing.

This paper is organized as follows. In Section 2 we introduce the optimization-based approach for scheduling battery
storage in a residential PV system, and include a motivating example. To assess the customer benefit, we introduce
a framework in Section 3 that incorporates different demand-side management approaches for price-response load
control, which integrates applicable incentives for PV generation. With this framework we define the daily energy
bill for a single customer with and without battery storage. In Section 4 we describe the operations savings associated
with battery scheduling, and in Section 5 we present an algorithm for selecting a key design parameter in the QP
described in Section 2. In Section 6 we implement the QP-based algorithm given real-world data from 145 residential
customers located in an Australian distribution network in the context of feed-in tariffs, and investigate the customer
benefit to changes in different elements within the QP (e.g., battery size).

Point of Common Coupling (PCC) 

Distribu(on+Grid+

+Solar+PV+

+++Ba4ery+

Residen(al+Load+

M1# M2#1+

2+

M3#

Figure 1: Residential system illustrating the direction of positive power flows and financial incentives to energy time-shift. Arrows associated with
gk , lk , βk and πk illustrate the assumed direction of positive power flow. Financial incentives for each meter M1, M2 and M3 are represented by
vectors ηb and ηc (in $/kWh), in which arrows illustrate the direction of power flow relevant for ηb and ηc.

Notation

Let Rs denote s-dimensional vectors of real numbers and Rs
≥0 s-dimensional vectors with all non-negative components

where, as usual, R1 =R. I denotes the s-by-s identity matrix and 1∈Rs
≥0 denotes the all-1s column vector of length s.

0 denotes an all-zero matrix, or an all-zero column vector, where the context will make clear the dimension intended,
and T = [ti j] denotes the s-by-s matrix satisfying ti j = 1 for i≥ j and ti j = 0 elsewhere.
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2. Problem formulation

2.1. Definitions and constraints

Figure 1 illustrates the topology of the system under consideration, including a set of meters M = {M1,M2,M3}
installed for the purpose of billing and compensation. For each k ∈ {1, . . . ,s}, meter M1 measures the average PV
generation gk (in kW), meter M2 measures the average power from node 1 to node 2 (lk − βk in kW), and meter
M3 measures the average power πk (in kW) supplied by (or to) the grid. Meters M2 and M3 may be bi-directional,
whereas meter M1 needs only be unidirectional since PV generation satisfies gk ≥ 0 for all k. Also shown in Figure 1
are vectors ηb and ηc, which represent financial incentives for billing and compensation respectively, defined in
Section 3.2.

The power flows indicated in Figure 1 are represented by vectors of length s, where s is the number of time intervals
of length ∆, and T = s∆ (in hours) is the time window of interest. In this paper we generally consider T = 24
hours, ∆ = 1/2 hour (30 minutes), which implies s = 48. Other choices are certainly possible, subject only to
commensurability of T , ∆ and s.

We represent the average power delivered to the residential load (in kW) over the period ((k−1)∆,k∆) by lk for all k∈
{1, . . . ,s}, and define the load profile over [0,T ] as l := [l1, . . . , ls]T ∈ Rs

≥0 . Likewise we represent the average PV
generation (kW) over the period ((k−1)∆,k∆) by gk for all k∈{1, . . . ,s}, and define the generation profile over [0,T ]
as g := [g1, . . . ,gs]

T ∈ Rs
≥0 . In what follows, we assume the day-ahead forecasts of load and generation profiles are

known and perfect.

We represent the average power (in kW) supplied by (or to) the grid over the period ((k−1)∆,k∆) by πk for all
k ∈ {1, . . . ,s} and define the grid profile over [0,T ] as π := [π1, . . . ,πs]

T ∈ Rs. By convention we represent power
flowing from (to) the grid to (from) the energy system by πk > 0 (πk < 0).

We represent the average power (kW) delivered from (or to) the battery over the period ((k−1)∆,k∆) by βk > 0 (or
βk < 0) for all k ∈ {1, . . . ,s}, and define the battery profile over [0,T ] as β := [β1, . . . ,βs]

T ∈ Rs. By convention
we represent charging (discharging) of the battery by βk < 0 (βk > 0).

From the configuration of the residential energy system in Figure 1, we observe that the following power balance
equation

lk = πk +gk +βk for all k ∈ {1, . . . ,s} , (1)

must hold.

The inclusion of the battery in Figure 1 leads to additional constraints, which we now detail. To capture the limited
“charging/discharging capacity" of the battery, we constrain β by

B1≤ β ≤ B1 , (2)

where B ∈ R≤0 and B ∈ R≥0.

Given β , the state of charge of the battery (in kWh) at time k∆ is denoted by χk, where

χk := χ0−
k

∑
j=1

β j∆ for all k ∈ {1, . . . ,s} , (3)

and χ0 denotes the initial state of charge of the battery. We represent the state of charge profile by χ := [χ0, . . . ,χs]
T ∈

Rs+1.

If we represent the battery capacity (in kWh) by C ∈ R≥0, it necessarily follows that the state of charge profile is
constrained by

0≤ χ ≤C
[

1
1

]
. (4)
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For a fixed initial state of charge satisfying 0 ≤ χ0 ≤ C, we define C := (χ0/∆)1, and C := (1/∆)(C− χ0)1, and
rewrite the battery constraints (3)–(4) as

−C≤−Tβ ≤ C. (5)

In this paper, we optimize a battery profile over a single day. In order to avoid an energy-shifting bias in these results,
we insist that the state of charge of the battery at the end of a day is the same as the state of charge of the battery at
the beginning of the day, i.e.,

χs = χ0, (6)

where χs is the final state of charge at time s∆.

Let A1 ∈ R4s×s, and b1 ∈ R4s be defined by

A1 :=
[
I −I T −T

]T
, b1 :=

[
B1T B1T CT CT

]T
. (7)

We now substitute equations (7) into equations (2) and (5), and equation (6) into (3), to succinctly write the battery
constraints as

A1β ≤ b1, (8)

1
T

β = 0. (9)

2.2. Objectives

In what follows, we seek to minimize the impact of the residential energy system on the grid, given a financial
incentive to energy time-shift, by minimizing

s

∑
k=1

hkπ
2
k , (10)

where hk is a selectable weighting such that hk ≥ 1 for all k ∈ {1, . . . ,s}.

Specifically, given load and generation profiles l and g, and given battery constraints χ0, C, and B, B we seek a battery
profile β and a grid profile π which minimize the expression in (10), subject to satisfaction of the power balance in
equation (1).

The minimization in (10) is subject to both inequality and equality constraints imposed by the battery (8)-(9) and the
power balance equation in (1), respectively. Lemma 1 below establishes this constrained minimization as a quadratic
program (QP).
Lemma 1. The minimization of expression (10), subject to battery constraints (8)–(9) and the power balance equation
(1), can be written as

min
x∈R2s

xT Hx (11)

such that

A1x≤ b1, (12)
A2x = b2, (13)

where

x :=
[
πT β T ]T ∈ R2s, H :=

[
H 0
0 0

]
∈ R2s×2s,

H := diag(h1, . . . ,hs) ∈ Rs×s, A1 :=
[
0 A1

]
∈ R4s×2s,

A2 :=
[

0T
1

T

I I

]
∈ R(s+1)×2s, b2 :=

[
0

l−g

]
∈ Rs+1.
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Proof. The result follows directly from equations (1), (8), and (9). �

The grid profile obtained by solving (11) subject to constraints (12)-(13) is said to be QP energy-shifted and we will
refer to the process of a customer implementing the daily battery and grid profiles obtained by solving (11) subject to
constraints (12)-(13) as QP energy-shifting.

2.3. Example

In this example we consider two battery capacities, C = 1kWh and 10kWh, to illustrate QP energy-shifting at a resi-
dence. For both battery capacities, let χ0 = 0.5C (initial battery state of charge), and B=−B= 1kW (charge/discharge
limits).

Let the load and generation profiles l and g be specified as shown in Fig. 2.3(a), where the residence load includes a
utility controlled heated water cylinder [45].2 Both load and generation profiles are specified for T = 24 hours, ∆ = 30
minutes and s = T/∆ = 48. Additionally, we let the weights hk = 1 for all k ∈ {1, . . . ,s}.

In Fig. 2.3(a) we observe the load profile peaks around midnight, consistent with the utility switching on the all-
electric-heated water cylinder at the customer premises, and the generation profile peaks around midday. Consequently
the peak generation does not align with the peak load at the residence.

Figure 2.3(b) illustrates the base-line grid profile to which we compare the grid profiles in Fig. 2.3(c)–(d). The base-
line grid profile has no battery to time-shift the grid profile π appearing in (10) (C = 0kWh). Therefore π is calculated
directly from the power balance equation in (1) with βk = 0. The grid profiles π illustrated in Figure 2.3(c)–(d)
arise from the solution of the QP in Lemma 1. Comparing the base-line results in Figure 2.3(b) to the grid profile in
Fig. 2.3(c), we observe the 1kW battery charges (βk < 0) to increase the base-line grid profile (e.g. from −1.26kW to
−0.81kW between 11.30-Midday), and discharges (βk > 0) to reduce the base-line grid profile (e.g. from 3.69kW to
2.69kW between 23.30-Midnight). In Fig. 2.3(d) we observe further reductions in the magnitude of π , except between
23.30-Midnight, due to the battery discharge constraint of 1kW.

2In some countries, residents allow the utility to control their all-electric-heated water systems for periods in the day, given a financial incentive.
For these customers, the utility switches their water-heating services on during periods of low load, and off during periods of peak-load, in a manner
that ensures minimal impact to the network.
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Figure 2: (a) Load and generation profiles l and g; (b) grid and battery profiles π and β for C =0kWh; (c) grid and battery profiles π and β for
C =1kWh; (d) grid and battery profiles π and β for C =10kWh.

This example demonstrates the reductions in magnitude of the grid profile π subject to the battery charge/discharge
constraints and capacity C. Hence, QP energy-shifting smooths residential load curves when hk = 1 for all k ∈
{1, . . . ,s}. In what follows we design a weighting matrix H in the QP that reduces residential energy bills, and
network peak load corresponding to peak pricing tariffs, while penalizing reverse power flow.

2.4. Extended definition of grid profile

We now extend our definition of grid usage over the period ((k−1)∆,k∆) to include explicit reference to the battery
capacity C and weights hk as follows:

π
C
k (hk) := lk−gk−βk for all k ∈ {1, . . . ,s} , (14)

where lk, gk, βk and hk remain as previously defined. We consequently denote the grid profile over [0,T ] by

π
C(H) := [πC

1 (h1), . . . ,π
C
s (hs)]

T ∈ Rs. (15)

When battery capacity C = 0, it follows that

π
0
k = lk−gk for all k ∈ {1, . . . ,s} , (16)

since the battery charging/discharging capacity βk = 0, k ∈ {1, . . . ,s}. The case where C =0 is defined as a base-line
grid profile against which we compare future grid profiles and is denoted by

π
0 := [π0

1 , . . . ,π
0
s ]

T . (17)

We note π0 is not a function of the selectable weights in H, as the base-line grid profile is solely a function of load
and generation profiles in (16).
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Remark 1. The grid profile π obtained from solving the quadratic program in Lemma 1 depends not only on the bat-
tery constraints C, B, B, χ0, and selected weightings hk, but also the load and generation profiles l and g, respectively.
Consequently π is a function π = π( l, g, C, B, B, χ0, H). For notational simplicity, however, we will henceforth
omit the functional dependence of π on the load/generation profiles and all the battery constraints other than the
battery capacity C, preferring instead to simply write πC(H), where no ambiguity arises. This notational convention
reflects our primary degrees of design flexibility, namely battery capacity C and the weighting matrix H.

3. Billing for a single customer

In this section we define the energy bill for a single residential customer for the household PV system depicted in
Figure 1. To reduce the day-ahead energy bill when the customer uses QP energy-shifting (Lemma 1), we require a
financial policy (in $/kWh) and a battery of capacity C. Since the financial policy requires meters in certain locations,
with particular modes of operation, we also define the metering topology in Section 3.1.

3.1. Metering topology

To formulate the energy bill for a single residential customer, we require the measured power flows from the residential
energy system in Figure 1. The metering topology defines how the power flows are to be measured. To formalize the
notion of metering topology we define two metering modes in terms of the meters M ∈M , and provide an example
with respect to meter M2 shown in Figure 1.

1. Gross metering mode: We say that meter M2 operates in gross metering mode if it measures power flow from node
1 to the battery/load node 2, but not power delivered in the reverse direction. That is, meter M2 measures and records
only power flows for which lk−βk ≥ 0. In the event lk−βk < 0, the meter records 0kW. Consequently gross metering
mode requires only uni-directional metering.

2. Net metering mode: We say that meter M2 operates in net metering mode if it measures power flow in both
directions, i.e., from node 1 to the battery/load node 2 (lk−βk ≥ 0), as well as power delivered in the reverse direction
(i.e., lk−βk < 0). Consequently net metering mode requires bi-directional metering [46].

The metering topology is defined by the mode of operation (gross or net) of each meter M ∈M in Figure 1. In order
to consider gross metering mode, the direction of power flow must also be included.

The metering topologies considered in this paper are defined below, with the direction of positive power flow as per
Figure 1, defined in Section 2.1.

• Metering topology 1: M1 and M2 operate in gross metering mode. M3 is not installed. M1 measures and records
the generation profile gk ≥ 0 for all k, M2 measures and records the power flow lk−βk ≥ 0 for all k.

• Metering topology 2: M3 operates in net metering mode. M1 and M2 are not installed.

3.2. Financial policies

To calculate the energy bill for a single residential customer, we require the measured power flows from the residential
energy system in Figure 1, and the corresponding electricity prices. Our definition of a financial policy (in $/kWh)
formalizes the electricity prices and includes incentives intended to influence customer energy utilization. Example
incentives include time-of-use (TOU) pricing, feed-in-tariffs and net metering [3], [46]. Our definition of a financial
policy below is sufficiently general to include these incentives in addition to more sophisticated dynamic day-ahead
pricing rates [23, 29, 37].

Our definition of a financial policy requires an electricity billing profile and an electricity compensation profile over
[0,T ], for each installed meter in M . The direction of power flow associated with electricity billing/compensation
is defined with reference to the direction of positive power flow that is specified at each meter M ∈M . We denote
electricity billing (in $/kWh) at meter M ∈M over the period ((k−1)∆,k∆) by ηb

k (M) for all k ∈ {1, . . . ,s}, and
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define the electricity billing profile over [0,T ] at M as ηb(M) := [ηb
1 (M), . . . ,ηb

s (M)]T ∈Rs
≥0. Likewise we denote the

electricity compensation (in $/kWh) at meter M ∈M over the period ((k−1)∆,k∆) by ηc
k (M) for all k ∈ {1, . . . ,s},

and define the electricity compensation profile over [0,T ] at M as ηc(M) := [ηc
1(M), . . . ,ηc

s (M)]T ∈ Rs
≥0.

In order to implement a financial policy, certain types of meters are required in particular locations. For example a
financial policy may require the meter M1 (in Fig. 1), which records positive power flows from the solar PV to node
1. For this meter the financial policy will specify the electricity billing and compensation profiles ηb(M1), ηc(M1),
respectively. If the electricity billing (or compensation) profile at meter M1 is defined by ηb

k (M1) = 0 (or ηc
k (M1) = 0)

for all k ∈ {1, . . . ,s}, then it is sufficient that meter M1 operates in gross metering mode. In this case the power flow
to be measured is in the same direction specified for electricity compensation (or billing).

We now define a financial policy over [0,T ] by using the day ahead electricity billing and compensation profiles at
each installed meter in M . An example financial policy is defined with reference to Fig. 1 for M = {M1,M2,M3}.
The direction of positive power flow at meter M1 is defined by g (from the solar PV to node 1) and electricity is
compensated in this direction ηc(M1). The direction of positive power flow at meter M2 is defined by l−β ≥ 0 (from
node 1 to node 2) and electricity is billed in this direction ηb(M2). The direction of positive power flow at meter
M3 is defined by π (from the PCC to node 1) and electricity is billed in this direction ηb(M3). For each electricity
compensation (or billing) profile ηb(M) (or ηc(M)), there also exists an electricity billing (or compensation) profile
ηc(M) (or ηb(M)) for power flowing against the positive direction at meter M ∈M .

The financial policies considered in this paper are defined with reference to metering topologies 1 and 2 defined in
Section 3.1. The financial policy associated with metering topology 1 includes an electricity compensation profile at
meter M1 (for power flow from the solar PV to node 1), and an electricity billing profile at meter M1 (for power flows
in the reverse direction), represented by ηc(M1) and ηb(M1) respectively; and an electricity compensation profile at
meter M2 (for power flow from node 2 to node 1), and an electricity billing profile at meter M2 (for power flows from
node 1 to node 2), represented by ηc(M2) and ηb(M2) respectively. Furthermore, ηb

k (M1) = 0 and ηc
k (M2) = 0, for

all k ∈ {1, . . . ,s} and hence it is sufficient that meters M1 and M2 operate in gross metering mode, as per the definition
of metering topology 1.

The financial policy associated with metering topology 2 has an electricity compensation profile at meter M3 (for
power flow from node 1 to PCC) and an electricity billing profile at meter M3 (for power flow from the PCC to
node 1), represented by ηc(M3) and ηb(M3) respectively. The following table summarizes the electricity billing and
compensation profiles for metering topologies 1 and 2.

Table 1: Electricity billing and compensation profiles for metering topologies 1 and 2
Meter Metering Topology 1 Metering Topology 2

billing compensation billing compensation
M1 ηb(M1) = 0 ηc(M1)

M2 ηb(M2) ηc(M2) = 0
M3 ηb(M3) ηc(M3)

To implement a gross feed-in tariff, we observe metering topology 1 is sufficient. To implement a net feed-in tariff, or
net metering, we observe metering topology 2 is sufficient.

3.3. Energy bill

To define the energy bill for the residential energy system in Figure 1, we combine the financial policy (in $/kWh)
with the measured power flows defined in Section 2.1. To reduce the energy bill when QP energy-shifting, we seek a
weighting matrix H given a fixed battery capacity C.

In what follows we define the energy bill (in $/day) in terms of the respective financial policy associated with metering
topologies 1 and 2 (Section 3.2). We assume the day-ahead billing and compensation profiles in the respective financial
policies are fixed by the utility or regulatory body and available to the consumer.
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In equation (6) we constrained the initial and final states of charge of the battery to be equal. Consequently, we assume
the cost associated with charging the battery to χ0 can be compensated for with the remaining charge at the end of the
day χs. Therefore, in defining of the energy bill, we ignore the cost associated with charging the battery to an initial
state of charge.

To formalize the energy bill associated with metering topology 1, we select the electricity prices that correspond to
measured power flows at meters M1 and M2. That is, for the financial policy relating to metering topology 1,we define
σk(M1) and σk(M2) as follows:

σk(M1) =

{
ηc

k (M1), if gk ≥ 0
ηb

k (M1), if gk < 0,
(18)

σk(M2) =

{
ηb

k (M2), if lk−βk ≥ 0
ηc

k (M2), if lk−βk < 0,
(19)

and denote σ(M1) := [σ1(M1), . . . ,σs(M1)]
T ∈ Rs

≥0 and σ(M2) := [σ1(M2), . . . ,σs(M2)]
T ∈ Rs

≥0 over the period
[0,T ]. Recall ηb

k (M1) = 0 and ηc
k (M2) = 0, for all k ∈ {1, . . . ,s}.

In order to minimize the energy bill associated with metering topology 1, we choose the weighting matrix for a given
battery capacity with constraints (8)–(9) known and fixed as

H1 := H(σ(M1),σ(M2)). (20)

Hence the choice of weighting matrix in the cost function (11) is dependent on the implemented financial pol-
icy.

Having fixed H1 in equation (20), we define the residential energy bill associated with metering topology 1, denoted
by ΣC(H1) (in $/day) by

Σ
C(H1) := ∆((l−β )T

σ(M2)−gT
σ(M1)). (21)

When the battery capacity C = 0, the energy bill defined in (21) reduces to

Σ
0 := ∆(lT

η
b(M2)−gT

η
c(M1)), (22)

since the battery charging/discharging capacity βk = 0 for all k ∈ {1, . . . ,s}, rendering the selectable weights in H1
irrelevant. The case where C = 0 also serves as a base-line energy bill, which we use as a comparison when assessing
the financial benefits of battery storage.
Remark 2. The energy bill notation convention ΣC(H1) is simplified, and consistent with the suppression of functional
dependence described in Remark 1. That is, our notation reflects our primary degrees of design flexibility, the battery
capacity C and the weighting matrix.

To formalize the energy bill associated with metering topology 2, we select the electricity prices that correspond to
measured power flows at meter M3. That is, we define σk(M3) in terms of the financial policy as

σk(M3) =

{
ηb

k (M3), if πC
k (hk)≥ 0

ηc
k (M3), if πC

k (hk)< 0,
(23)

and we denote σ(M3) := [σ1(M3), . . . ,σs(M3)]
T ∈ Rs

≥0 over the period [0,T ]. In order to minimize the energy bill
associated with metering topology 2, we choose the weighting matrix for a given battery capacity with constraints
(2)–(4) known and fixed as

H2 := H(σ(M3)). (24)

Having fixed H2 in (24), we define the energy bill associated with the financial policy relating to metering topology 2
by

Σ
C(H2) := ∆π

C(H2)
T

σ(M3), (25)
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which reduces to the base-line energy bill for C = 0 given by

Σ
0 := ∆(l−g)T

σ(M3), (26)

where π0 = l−g since the battery charging/discharging capacity satisfies βk = 0 for all k ∈ {1, . . . ,s}.

4. Savings for a single customer

In this section we define the energy savings for the household PV system depicted in Figure 1. The results in this
section allow a single customer to assess the cost-effectiveness of installing a battery of a given size. Recall, this paper
focuses on the operational energy savings associated with QP energy-shifting and as such we omit the capital cost of
installing a battery.

4.1. Energy savings

To examine the effectiveness of QP energy-shifting for a given size battery, we define the energy savings (in $/day).
The energy savings are denoted by ΨC(H) and defined by

Ψ
C(H) := Σ

0−Σ
C(H). (27)

We recall from Section 3.3, the energy bill ΣC(H) is defined for a particular financial policy and selection of weights in
H, given load and generation profiles l and g, a battery of a given size C, with constraints (2)–(4) known and specified.
When C = 0, Σ0 denotes the base-line energy bill.

Given unique load and generation profiles for 365 consecutive days and a battery of a given size C, with constraints
(2)–(4) known and specified, their exists a unique energy saving ΨC(H) for each of the 365 days. We define the
summation of these unique energy savings by ΘC(H) in $/yr and label this summation the annual savings. Thus when
the annual savings are positive, there exists an operational benefit to QP energy-shifting.

Hence ΘC(H)> 0 implies the installation is operationally cost-effective, ΘC(H) = 0 implies the installation is opera-
tionally cost-neutral and ΘC(H)< 0 implies no financial benefit for battery storage for that given year.

4.2. Special case: zero energy savings

Consider the special case where there is a fixed price for electricity (in $/kWh) at all installed meters in M , irrespective
of power flow direction and time of day. Lemma 2 below demonstrates that under these circumstances, there is no
financial incentive for a resident to install battery storage. That is, since the battery acts as an energy time-shifter, the
lack of differential pricing at any point in time gives no incentive to energy time-shift.
Lemma 2. Fix η > 0 and let the electricity billing and compensation profiles in the financial policy satisfy the
following for all M ∈M :

η
b
j = η

c
k = η for all j,k ∈ {1, . . . ,s}, (28)

η
b = η

c = η1. (29)

Assume all meters M ∈M are installed such that all power flowing to or from the grid is quantifiable (for example
metering topology 1 or 2). Then for all choices of battery capacity C and weighting matrix H, the energy savings are
ΨC(H) = 0.

Proof. Consider metering topology 2. Rearranging equation (3) yields

χ0−χs =
s

∑
k=1

βk∆. (30)
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Recall from the definition of the time window T , we require ∆ to be positive (∆ > 0) and a constant. Combining the
definition of ∆ with the constraint in equation (6) implies

s

∑
k=1

βk = β
T
1= 0. (31)

Furthermore, definitions (14) and (15) imply

π
C(H2) = l−g−β . (32)

Additionally, substituting equations (28)–(29) into (23) yields

σ(M3) = η1. (33)

Therefore, from equation (25) the energy bill is

Σ
C(H2) = ∆π

C(H2)
T

σ(M3) = ∆(l−g−β )T
η1 = ∆(l−g)T

η1−∆ηβ
T
1 = ∆(l−g)T

σ(M3) = Σ
0,

where the final equality is defined in equation (26).

The energy savings (27) are then

Ψ
C(H2) = Σ

0−Σ
C(H2) = 0. (34)

A similar calculation can be performed for other metering topologies, provided the meters in M are installed such
that all power flowing to or from the grid is quantifiable. �

5. Heuristic for selecting the weighting matrix

In this paper our objective is to maximize the daily operational savings that accrue to a single customers, while
penalizing large voltage swings observed in the distribution network stemming from reverse power flow and peak
load. We assume peak electricity billing rates coincide with generation shortages or peak grid demand and look to
prioritize the minimization of energy flow from the grid during these events, while penalizing reverse power flow.
To achieve our objective, we seek a weighting matrix H in the QP for a single customer with battery storage in the
residential setting shown in Fig. 1. Given perfect day-ahead load and generation forecasts, and battery constraints
(8)–(9), the HEM system computes the weighting matrix H via a heuristic for each day-ahead. We define the heuristic
in what follows.

In Section 2.2, the minimization of expression (10) was presented as a constrained quadratic program (Lemma 1),
where the weights hk in H were selectable. In this section we consider the specification of the matrix H that maximizes
the annual savings, while reducing the impact of the residential system on the grid. In practice, the matrix H is difficult
to obtain, as it depends on a variety of factors including financial policies, metering topologies and daily variations in
load and generation profiles. To address this problem we propose a greedy-search heuristic for obtaining a so-called
preferred H, which is in turn based upon a base-line weighting matrix denoted by H0.

When selecting the weights in the preferred H, our rationale is to increase base-line weights when electricity billing is
high and decrease base-line weights when electricity billing is low, and to continue increasing/decreasing so long as
the daily residential savings increase. This rational reduces network peak loads without contributing to reverse power
flow during the peak pricing period, and increases operational savings that accrue to customers.

The basic idea of the heuristic is to increase each weight hk in H0, as long as this increase leads to an increased energy
saving in (27). To mitigate against numerical difficulties with the solution of the quadratic program in Lemma 1,
we increase weights in H0 until a maximum allowable value of hk is reached. To this end, weights in H0 are scaled
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by the minimum cost and capped at a maximum value. To cap the weights hk we introduce the following saturation
operation:

sath1(hk) :=


1, if hk < 1
hk, if 1≤ hk ≤ h
h, if hk > h,

(35)

where the lower bound is 1 in accordance with the definition of hk in Section 2.2 and h > 1 is fixed. The constant h is
chosen to mitigate against numerical difficulties in solving the QP in Lemma 1. In this paper, we set h = 1000.

To formalize the definition of the base-line weighting matrix, let

η̃k := ∑
M∈M

η
b
k (M), ∀ k ∈ {1, . . . ,s} (36)

η
? := min

k∈{1,...,s}
η̃k, (37)

and define the base-line weighting matrix H0 as

H0 := diag
[
H(1)

0 , . . . ,H(k)
0 , . . . ,H(s)

0

]
, (38)

where H(k)
0 := sath1

(
η̃k/η?

)
.

Given H0, the proposed heuristic requires the function for energy savings Ψ(·) defined in (27). Recall the energy
savings function Ψ(·) requires the constraints and solution to the QP in Lemma 1 and the energy bill Σ(·) pertaining
to a given metering topology and financial policy as defined in Section 3. To simplify the notation, we use Ψ(·) rather
than ΨC(H) to indicate that the battery capacity C is fixed.

The main loop in the heuristic below (lines 6–19), doubles weights in H0 progressively, from the largest to the smallest
element in H0. If there exist multiple elements in H0 with the same magnitude, we double the multiple elements
concurrently. The set of live indices s̃ keeps track of the indices in H0 that are yet to be increased, and Is̃ denotes an
s-by-s matrix in which Is̃

j, j = 1 if j ∈ s̃ and zero otherwise.

6. Application of QP energy-shifting

We analyzed measured load and generation profiles from July 1st 2010 to the 30th of June 2011, for each of 300
randomly selected low voltage customers located in an Australian distribution network, operated by Ausgrid. The
Ausgrid distribution network covers 22,275 km2 and includes load centers in Sydney and regional New South Wales.
The load and generation profiles l and g for each of the 300 customers are defined with T = 24 hours, ∆ = 30 minutes,
and s = T/∆ = 48, for each day in the 365 days.

We eliminated customers with a maximum load or PV generation less than 5W on any day of the year (lk < 0.005 or
gk < 0.005 for all k ∈ {1, . . . ,s}), leaving 145 of the original 300 customers. We refer to this set of 145 customers as
the ensemble.

When QP energy-shifting, the annual savings for each customer in the ensemble are dependent on a variety of factors
and we investigate four of the most important factors in what follows. In Section 6.2 we investigate the influence of
daily variations in the load and generation profiles on savings for particular customers in the ensemble. In Section 6.3
we compare annual savings for different metering topologies. In Section 6.4 we compare annual savings with and
without the preferred H. In Section 6.5 we investigate the influence of battery capacity on annual savings. The com-
putational time when QP energy-shifting (including the time to find the preferred H) on each day for each ensemble
member is on average 0.422 seconds with an Intel i7-2630QM processor.
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Heuristic: Returns the preferred H given Ψ(·)
Input: l, g, C, B, B, χ0, π0, h, H0,

H = I, Ψ0 = Ψ(H0), s̃ = {1, . . . ,s}
1 for k ∈ {1, . . . ,s} do
2 if π0

k = 0 then
3 q = {p ∈ {1, . . . ,s}|π0

p = 0}
4 s̃ = s̃\q

5 H(q)
0 = 1

6 while H(s̃)
0 > 1 do

7 k? = argmaxs̃(H
(s̃)
0 )

8 J = { j ∈ {1, . . . ,s}|H( j)
0 = H(k?)

0 }
9 ∀ j ∈ J H0 = diag

[
H(1)

0 , . . . ,2H( j)
0 , . . . ,H(s)

0

]
10 ∀ j ∈ J H( j)

0 = sath1
(

H( j)
0

)
11 Ψ0 = Ψ(H0)

12 while Ψ0 > Ψ0 and H(k?)
0 < h do

13 Ψ0 = Ψ(H0)

14 H0 = H0

15 ∀ j ∈ J H0 = diag
[
H(1)

0 , . . . ,2H( j)
0 , . . . ,H(s)

0

]
16 ∀ j ∈ J H( j)

0 = sath1
(

H( j)
0

)
17 Ψ0 = Ψ(H0)

18 ∀ j ∈ J H = diag
[
H(1)

0 , . . . ,H( j)
0 , . . . ,H(s)

0

]
19 s̃ = s̃\ J

20 H = H+ Is̃
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6.1. Simulation Parameters

In the following we use the heuristic to find the H matrix when QP energy-shifting, except as specified in Section 6.4.
To calculate the annual savings for the ensemble when QP energy-shifting, we fix the battery capacity at 10kWh,
except in Section 6.5 where we vary the battery capacity within the range 0kWh ≤ C ≤ 30kWh. In all cases, the
remaining battery constraints (2)–(4) are chosen as χ0 = 0.5 C, and B =−B = 5 kW. We also fix the length-s billing
and compensation profiles (each given in $/kWh) for metering topology 1 as follows:

η
b(M1) = η

c(M2) = [0, . . . ,0]T ,

η
c(M1) = [0.4, . . . ,0.4]T ,

η
b(M2) = [. . . ,ηb

k , . . . ]
T ,

where ηb
1−14 = 0.03, ηb

15−28 = 0.06, ηb
29−40 = 0.3, ηb

41−44 = 0.06, and ηb
45−48 = 0.03. The non-zero profiles are

shown in Figure 3(a).

For metering topology 2, the length-s compensation and billing profiles (in $/kWh) are again fixed and given by

η
c(M3) = [0.4, . . . ,0.4]T ,

η
b(M3) = [. . . ,ηb

k , . . . ]
T ,

such that ηb(M3) = ηb(M2). The non-zero profiles are shown in Figure 3(b).
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Figure 3: Non-zero billing and compensation profiles for metering topologies 1 and 2.

For both metering topologies in Figure 3 we describe electricity billing from 10pm-7am at the rate of $0.03/kWh
as an off-peak pricing period, electricity billing from 7am-2pm and again from 8pm-10pm at the rate of $0.06/kWh
as a shoulder pricing period and electricity billing from 2pm-8pm at the rate of $0.30/kWh as a peak pricing pe-
riod.

For metering topology 1 in Figure 3 we describe electricity compensation ηc(M1) as a gross feed-in tariff. For
metering topology 2 in Figure 3 we describe electricity compensation ηc(M3) as a net feed-in tariff.

6.2. Influence of Load and Generation Profiles

In this section we identify typical load and generation profiles that result in either a positive or negative operational
saving when QP energy-shifting under metering topology 1. To do this we compare daily energy savings for two
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customers in the ensemble. The selected two customers are chosen with significant differences in their respective
load and generation profiles (l and g). The two representative customers are denoted Customer 75 and Customer
200.

Figure 4 illustrates the significant differences in the respective load and generation profiles for customers 75 and
200. In Figure 4(a) we observe Customer 75 consumed most of its energy during the off-peak pricing period between
10pm and 7am. Meanwhile the solar PV unit delivered energy from 7am to 7:30pm and was in excess of the residential
energy demand from 8am-7:30pm. Consequently, Customer 75 delivered energy to the grid from 8am-7:30pm on the
9th of January 2011.

In Figure 4(b) we observe Customer 200 consumed a significant proportion of its energy during the peak pricing period
(2pm-8pm) and very little energy during the off-peak pricing period (10pm - 7am). In Figure 4(b) we also observe
the generation profile is less than the load profile for the entire day (gk < lk for all k ∈ {1, . . . ,s}). Consequently, there
was no energy delivered to the grid by Customer 200 on the 5th of July 2010.
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Figure 4: Representative load and generation profiles for customers 75 and 200.

For both customers 75 and 200, given a financial policy associated with metering topology 1 and simulation parameters
defined in Section 6.1, we calculate the daily energy savings given a 10 kWh battery. From these daily energy savings
we find Customer 75 would have lost $2.68 on the 9th of January 2011 and Customer 200 would have saved $2.70 on
the 5th of July 2010 by using QP energy-shifting.

To understand why QP energy-shifting would save Customer 200 $2.70, while costing Customer 75 $2.68, given the
load and generation profiles in Figure 4, we compare the respective battery states of charge. In Figure 5(a) we observe
the battery discharges mostly during the off-peak pricing period when Customer 75 consumed most of its energy and
charges during the peak pricing period rather than the shoulder pricing period when PV generation was high and load
low due to the weightings imposed via the heuristic. Consequently the cost of charging the battery is not offset by the
cost of discharging the battery for Customer 75 on the 9th of January 2011.

In Figure 5(b) we observe the battery discharges mostly during the peak pricing period when the customer consumed
most of its energy and charges during the off-peak pricing period as well as when the solar PV generated energy.
Therefore the cost of charging the battery is offset by the cost of discharging the battery for Customer 200 on the 5th
of July 2010.
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Figure 5: The battery SOC for customers 75 and 200 when using QP energy-shifting on the 9th of January 2011 and the 5th of July 2010,
respectively.

On each day from the 1st of July 2010 to the 30th of June 2011 we calculated the daily energy savings for customers
75 and 200. Figure 6 illustrates the distribution of these daily savings. In Figure 6(a) we observe QP energy-shifting
results in Customer 75 losing money over the course of a year, even though some days provide savings. This loss of
money is attributed to load and generation profiles that caused the battery to charge during peak pricing periods and
discharge during off-peak pricing periods, consistent with our observations in Figure 5(a).

In Figure 6(b) we observe QP energy-shifting results in Customer 200 saving money over the course of a year. This
saving is attributed to load and generation profiles that cause the battery to charge during the off-peak pricing periods
and discharge during the peak pricing periods, consistent with our observations in Figure 5(b).
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Figure 6: Distribution of daily saving resulting form QP energy-shifting for customers 75 and 200

Consequently, given metering topology 1, the daily cost of charging a given battery must be offset by the daily cost of
discharging a given battery for a customer to reap the benefits of QP energy-shifting. Therefore, given the financial
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policy associated with metering topology 1 described in Section 6.1, customers that consume most of their energy
during the off-peak pricing period and generate more energy then they consume, will not financially benefit from
QP energy-shifting. On the other hand, those who consume most of their energy during the peak pricing period and
generate less energy then they consume, will financially benefit from QP-energy shifting.

6.3. Influence of metering topologies

For each customer in the ensemble, we now calculate and compare the annual savings associated with QP energy-
shifting given the financial policy associated with either metering topology 1 or 2 as presented in Section 3.1. For each
customer, the annual savings are again calculated for a 10 kWh battery and in all cases, the simulation parameters are
as defined in Section 6.1.

Figure 7 illustrates the distribution of annual savings for all customers in the ensemble under two metering topologies.
In Figure 7(a) we observe metering topology 1 saves the ensemble on average $350/yr, however nine customers
lose money, including Customer 75. In Figure 7(b) we observe metering topology 2 saves the ensemble on average
$100/yr, however fifty customers lose money, including Customer 75. Hence some customers do not benefit from QP
energy-shifting, irrespective of the metering topology.
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Figure 7: Annual savings distribution for the ensemble resulting from metering topologies 1 and 2

We again visit the representative load and generation profiles for Customer 75 in Figure 4(a) to understand the un-
derlying principles that result in Customer 75 not benefiting from QP energy-shifting, given metering topology 2. In
Figure 4(a) we observed Customer 75 generated energy and delivered most of this energy to the grid and was compen-
sated for this at $0.4/kWh. However if Customer 75 employed QP energy-shifting, the generated energy would instead
charge a battery when in excess of the load, leading to a loss in compensation at $0.4/kWh. Given the financial policy
relating to metering topology 2, it is not possible for this customer to recoup this compensation loss by discharging
the battery, as the maximum billing rate is $0.3/kWh. Therefore, customers that would ordinarily deliver energy to the
grid, may not profit from QP energy-shifting when electricity compensation is in excess of electricity billing.

6.4. Influence of the selection of H

In this section we verify the heuristic proposed in Section 5. The heuristic finds a matrix H that increases the an-
nual savings, with comparison to the base-line H (denoted H0). The results in this section are based on the battery
constraints and financial policies as per section 6.1.
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For each customer in the ensemble we calculate the annual savings when QP energy-shifting using both the preferred
H and H0 given the financial policies associated with metering topologies 1 and 2. We then average the annual savings
of the ensemble and label this average the mean annual savings (in $/yr).

We record the mean annual savings for both the preferred H and H0 in Table 2. From this table we observe the
preferred H increases mean annual savings when QP energy-shifting, irrespective of the metering topology. Hence
the heuristic given in Section 5 successfully increases the mean annual savings for the ensemble, with comparison to
H0.

Table 2: Mean Annual Savings for the ensemble
Battery Metering Topology 1 Metering Topology 2

H0 H H0 H
10kWh $266/yr $348/yr $9/yr $90/yr

6.5. Influence of the battery capacity

To assess the influence of battery capacity (in kWh) on residential annual savings when QP energy-shifting we con-
sider again customers 75 and 200 from the ensemble. For these customers we vary the battery capacity (C) given the
set of battery capacities (in kWh) C = {0, 0.1, 1, 2, 4, 6, 8, 10, 15, 20, 30} and plot the results in Figure 8.

In Figure 8 we observe that an increase in the battery capacity results in an increase in financial losses for Customer 75.
In comparison, an increase in battery capacity results in an increase in annual savings for Customer 200. Furthermore,
the increase in annual savings for Customer 200 rapidly approaches an asymptotic value with a 30kWh battery pro-
viding minimal additional savings over a 15kWh battery. Consequently, not all customers benefit from battery storage
and increasing the size of the battery does not necessarily increase the annual savings for a given customer.
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Figure 8: Comparison of annual savings for customers 200 and 75 with variable battery capacities, under the financial policy pertaining to metering
topology 1.

Considering the subset of customers who do financially benefit from QP energy-shifting, if we know the capital cost
of installing a battery of a given size, with constraints known and specified, Figure 8 may be useful in identifying the
most cost-effective battery capacity. Furthermore, given the capital cost of installing a battery, we expect there also
exists a critical annual saving where increases in battery capacity may no longer be cost-effective.

19



7. Conclusions

In this paper we have presented a QP-based algorithm for day-ahead scheduling of residential battery storage co-
located with solar PV. The QP-based algorithm is formulated to balance two objectives. The first objective is to
minimize the impact of the residential system on the grid, by reducing the network peak demand and non-compliant
voltage deviations associated with reverse power flow. The second objective is to increase the daily operational savings
that accrue to customers, by time-shifting residential load from peak pricing periods to off-peak pricing periods. In
particular, we balance the reduction of load during during peak pricing periods with penalties for reverse power flow
during the same period so that voltage rise associated with solar PV is not simply time-shifted to the peak pricing
periods. Furthermore, our proposed framework allows for a variety of financial incentives and their required metering
topologies.

Our QP-based algorithm requires a user-specified weighting matrix, H. We have presented a heuristic approach to the
specification of H. Other approaches are possible, and may provide improved customer benefits.

In the context of feed-in tariffs we assessed the customer benefit of QP energy-shifting by using measured load and
generation data from 145 residential customers located in an Australian distribution network. In assessing the potential
benefit for each of these customers, we observed that most, but not all, customers see operational savings. Customers
who are offered incentives to generate more electricity then they consume, with peak load falling outside the peak
and shoulder pricing periods, are included in the category of negative operational savings. Further work is needed to
more completely characterize suitable financial policies, metering topologies, and battery size with respect to financial
benefits of QP energy-shifting for customers who observed negative operational savings.
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